GCE: Analysis, measure theory, Lebesgue integration August 2015
 No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:
Use the Fubini theorem to prove that

$$
\int_{\mathbb{R}^{n}} e^{-|\mathbf{x}|^{2}} d \mathbf{x}=\pi^{n / 2}
$$

Here $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Hint: For $n=2$, use polar coordinates.

Exercise 2:
Let (X, \mathcal{A}, μ) be a measure space, and f be in $L^{1}(X)$. Let for all positive integers n set $B_{n}=\{x \in X: n-1 \leq|f(x)|<n\}$.
(i). Show that $\mu\left(B_{n}\right)<\infty$ for all $n \geq 2$.
(ii). Show that $\sum_{n=2}^{\infty} n \mu\left(B_{n}\right)<\infty$.
(iii). Define $C_{n}=\{x \in X: n-1 \leq|f(x)| \leq n\}$. Is the sum $\sum_{n=2}^{\infty} n \mu\left(C_{n}\right)$ finite?
(iv). Show that $\sum_{n=2}^{\infty} \sum_{m=2}^{n} \frac{m^{2}}{n^{2}} \mu\left(B_{m}\right)<\infty$.
(v). Show that for $n \geq 2$

$$
\int|f|^{2} 1_{\{|f|<n\}}=\int|f|^{2} 1_{\{|f|<1\}}+\sum_{m=2}^{n} \int|f|^{2} 1_{B_{m}}
$$

and infer that $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int|f|^{2} 1_{\{|f|<n\}}<\infty$.

Exercise 3:

Prove or Disprove: Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{R}$, with f being a measurable function, and g being a continuous function. Then $f \circ g$ is measurable. By definition, $(f \circ g)(x):=f(g(x))$,
that is, it is the composition of the two functions.

